Editorial: Plant Immunity against Viruses
نویسندگان
چکیده
Plant viruses, the simple obligate intracellular parasites with small genomes, rely entirely on host machineries for their life cycle including replication, intracellular (cell-to-cell) and systemic movement (Nelson and Citovsky, 2005). Virus infections pose serious threats to agriculture and cause huge economic losses. Despite encoding only a limited number of proteins, numerous interactions of viral RNAs/proteins with host factors have puzzled the plant virologists for over a century and the complexity of these interactions is just becoming understood. Plants have developed two major strategies to counteract virus infections: resistance (R) gene-mediated, and RNA silencing-based defenses. In addition, the mutation in essential genes for viral infection also causes plant resistance against viruses, called recessive gene-mediated resistance. These approaches have been used in crop protections and have shown significant economic impact (Abel et al. articles, covering almost every aspect of plant-virus interactions. The featured in-depth topic reviews in various sub-fields provide readers a convenient way to understand the current status of the related sub-fields and the featured research articles expand the current knowledge in related sub-fields. Not unexpectedly, vast majority of the papers in this Research Topic are related to gene silencing but with totally distinct emphasis. Khalid et al. summarizes the applications of various small RNA based genetic engineering (SRGE) in crop protection, focusing on the technology evolution and successful cases in different crops. Andika et al. reviews the current information on the molecular aspects of antiviral RNA silencing in roots, with emphasis on the interactions between host antiviral defense and soil-borne viruses. The distinctive characteristic features of RNA silencing in roots relative to shoots are summarized. Moon and Park review how the RNA silencing pathway cross-talks with the resistance (R) gene-mediated defense. Several components involved in host RNA silencing mechanisms have recently been shown to be required for R gene-mediated defense. It seems that it is a common phenomenon that miRNAs or siRNAs regulate R-gene mediated resistance through targeting R genes for cleavage in plants (Moon and Park). It is plausible that the cross-talk between these two defense pathways is to maximize the efficiency of defense responses against viral infections (Nakahara and Masuta, 2014). Huang et al. summarize the various scenarios of host-and pathogen-derived sRNAs or pathogen-induced host sRNAs in regulating host resistance/susceptibility or pathogen virulence/pathogenicity. The zigzag model (Jones and Dangl, 2006) presents a classic view of the interactions between plants and non-viral pathogens. Ding (2010) considered dsRNA as the …
منابع مشابه
Dominant resistance against plant viruses
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common m...
متن کاملStereoisomers of the Bacterial Volatile Compound 2,3-Butanediol Differently Elicit Systemic Defense Responses of Pepper against Multiple Viruses in the Field
The volatile compound 2,3-butanediol, which is produced by certain strains of root-associated bacteria, consists of three stereoisomers, namely, two enantiomers (2R,3R- and 2S,3S-butanediol) and one meso compound (2R,3S-butanediol). The ability of 2,3-butanediol to induce plant resistance against pathogenic fungi and bacteria has been investigated; however, little is known about its effects on ...
متن کاملCrop immunity against viruses: outcomes and future challenges
Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently empl...
متن کاملSilencing and Innate Immunity in Plant Defense Against Viral and Non-Viral Pathogens
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific ca...
متن کاملInteraction between viral RNA silencing suppressors and host factors in plant immunity.
To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017